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INTRODUCTION

To guess is cheap; to guess wrongly is expensive (Chinese
proverb).

Reservoir-quality predictivemodelswill be a useful element
of risk analysis until remote-sensing tools are invented that ac-
curately measure effective porosity and permeability ahead of
the bit. This issue of the AAPG Bulletin highlights recent ad-
vances in a new generation of reservoir quality models that
have successfully predicted porosity and permeability in diverse
siliclastic reservoirs under many different burial conditions.

Most previous attempts at predrill reservoir quality predic-
tion have relied on empirical correlations or on first-principle
geochemical simulations that incorporate laboratory-derived
input parameters (Wood and Byrnes, 1994). The new reser-
voir quality models differ from previous approaches in that,
although incorporating theory-inspired algorithms, they include
terms with values that are explicitly designed to be calibrated
by, and tested against, data sets of high-quality petrographic
analyses that are linked to thermal and effective-stress histo-
ries. Petrographic observations therefore provide essential con-
straints in these models on the types, timing, and rates of key
geologic processes affecting sandstone pore systems. This ap-
proach avoids the pitfalls inherent in predictions based on
statistical correlations devoid of process interpretation (e.g.,
porosity-versus-depth trends) or on first-principle geochem-
ical models that rely exclusively on laboratory-derived data to
constrain the nature and rates of geochemical reactions.

Statistical correlations commonly fail to accurately predict
reservoir quality in areas away from the observation data set
because of changes in the relative significance of the controlling
geologic processes. These changes reflect inevitable differences
in sandstone compositions, textures, and burial histories that
occur between the observation data set and the area of interest.
For example, a porosity-depth trend driven by mechanical
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compaction in shallow parts of a basin will not
extrapolate successfully to deeper regions where
high-temperature quartz cement begins to reduce
porosity at very different rates from those associated
with compaction. In addition, differences in tex-
tural and compositional attributes, some of them
subtle, can significantly affect porosity-depth trends
(Figure 1). Taylor et al. (2010, this issue) show geo-
logic data sets with high-quality petrographic data,
in which trends from shallow intervals break down
with increasing burial depth. They also document
how porosity-depth trends may vary significantly
between basins even in shallow intervals, where
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compaction is the dominant control on porosity
decline.

Most current first-principle geochemical mod-
els have limited predictive capabilities because they
rely on laboratory-derived kinetic parameters and
do not account for important changes in rock tex-
ture and pore-system surface area during the course
of diagenetic alteration. These models sometimes
ignore mechanical compaction, although that pro-
cess is responsible for the greatest amount of porosity
loss in most sandstones (Lundegard, 1991) and may
significantly reduce reactive surface areas. In addition,
such models do not consider the important impact
Figure 1. Porosity-depth trends vary with dominant burial process and lithology. Shown is a modeled porosity evolution with burial
for a well-sorted, fine-grained, quartzo-feldspathic (rigid-grained) eolian sandstone with variable grain coats formed near the surface.
In this hypothetical example, the recently deposited sand (A) undergoes simple subsidence over more than 155 m.y., with no uplift or
overpressure development, to burial depths of 6500 m (21,300 ft). Intergranular porosity evolves from 42% near the surface to a wide
range of possible values depending on grain coat coverage at depth (e.g., C to D). During burial, porosity decreases, initially by mechanical
compaction under increasing effective stress, to about 26% at 2 km (1.2 mi) depth (B). Below this point, compaction in rigid-grained sands
stabilizes to very low rates (red curve). At 80°C, significant quartz cement begins to form. Below this point, as in many rigid-grained sands,
most further intergranular porosity loss results from quartz cement filling pores. The amount of cement formed can be calculated as a
function of time, temperature, grain size, and quartz-grain surface area available for cement precipitation. Quartz cement can be inhibited
and porosity preserved by early formed grain coats, commonly of clays, that reduce available quartz surface area. With higher coat
coverage, less quartz cement forms. Highest porosities are preserved at depth where compaction and cement are minimized (D), in this
case, by rigid grains and well-developed grain coats.
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that progressive development of overgrowth crystals
can have on overall rates of reaction. For example,
the results of Lander et al. (2008) imply that, other
factors being constant, the average rate of quartz
precipitation per surface areawill decline by nearly
an order of magnitude for quartzose sandstones as
the cement reduces intergranular porosity (IGP)
from25 to 5%. This reduction in average rate arises
because the proportion of nucleation area that is
madeupof slow-growing euhedral faces progressively
increases as the overgrowth cementation proceeds.

Purely thermodynamic models are an inade-
quate basis for sandstone reservoir quality predic-
tion because of the clear kinetic control on many
important diagenetic processes such as quartz ce-
mentation (e.g., Walderhaug, 2000; Ajdukiewicz
et al., 2010, this issue; Taylor et al., 2010, this
issue; Tobin et al., 2010, this issue), plagioclase al-
bitization (Perez and Boles, 2006), and fibrous il-
lite formation (Franks and Zwingmann, 2010, this
issue; Lander and Bonnell, 2010, this issue). Lab-
oratory experiments that examine the kinetics of
such geochemical reactions are an essential means
for understanding the underlying processes. How-
ever, to our knowledge, geochemical models that
rely on silicate reaction kinetics derived from labo-
ratory experiments have yet to yield accurate pre-
drill predictions for cement abundances. Compared
with natural reactions in sandstone reservoirs, labo-
ratory experiments typically occur at substantially
higher temperatures during much shorter time in-
tervals, involve conditions that are far from equi-
librium, are undertaken on artificially cleaned ma-
terials, do not consider interactions among the full
complement of phases typically present in reservoir
sandstones, and ignore differences in euhedral and
noneuhedral growth rates for overgrowth phases.
These differences in conditions may profoundly
alter experimental reaction kinetics comparedwith
natural systems, resulting in reaction rates that are
up to five orders of magnitude faster than those
implied by constraints from geologic data sets, as
discussed by Lander and Bonnell (2010, this issue).

Input to the new reservoir quality prediction
models includes petrographic data describing sedi-
ment texture, composition, and early cement at-
tributes, as well as burial history reconstructions.
These data are integrated to simulate compaction
and cementation effects on pore systems under
changing effective stress and temperature condi-
tions through time. Model output includes single-
site or mapped distributions of subsurface porosity
and permeability for a given input lithology at any
location or over any surface within the burial his-
tory model and can be linked to paleogeographic
maps or facies models to integrate depositional
variability with burial effects. Models have been
applied to numerous reservoir-quality predictive
studies (Bjørkum et al., 1998; Bonnell et al., 1998,
2000; Lander and Walderhaug, 1999; de Souza
and McBride, 2000; Walderhaug et al., 2000;
Bloch et al., 2002; Taylor et al., 2004; Thomas et al.,
2005), have been used inversely to help constrain
thermal histories (Awwiller and Summa, 1997,
1998; Lander et al., 1997a, b), and have proven
useful for understanding the interactions between
diagenesis and structural deformation (e.g., Lander
et al., 2002; Fisher et al., 2003; Laubach et al.,
2004; Perez and Boles, 2005; Laubach and Ward,
2006;Makowitz et al., 2006, in press; Solano et al.,
2008; Laubach and Diaz-Tushman, 2009; Olson
et al., 2009; Becker et al., 2010).Taylor et al. (2010,
this issue) provide examples of single-site predrill
reservoir quality predictions, and Tobin et al. (2010,
this issue) provide map-based predictions.

Although these new models are a significant
improvement on previous predictivemethods, they
are still evolving as research addresses current lim-
itations. At present, the models work best in sand-
stones in which reservoir quality is dominantly con-
trolled by some combination of compaction, quartz
cementation, or fibrous illite formation. However,
some sandstone reservoirs are strongly affected by
other processes that are not yet well constrained.
For example, early diagenetic features such as grain
coats, carbonate cements, and secondary porosity
are accounted for in the current reservoir quality
models throughobservations or analogs, rather than
by a priori predictions. Improved models for early
diagenetic attributes will allow more accurate res-
ervoir quality predictions ahead of the bit in ex-
ploration settings where few calibration data are
available and more detailed field-scale predictions
of reservoir quality distribution that will be useful
Ajdukiewicz and Lander 1085



for geologic models and development plans. Re-
search on this front is underway. For example,
Ajdukiewicz et al. (2010, this issue) propose amodel
for controls on grain-coat coverage and resulting
deep reservoir quality distribution in theNorphlet,
and Morad et al. (2010, this issue) review known
links between reservoir quality and mappable geo-
logic features.
RESERVOIR QUALITY CONTROLS:
INTERACTION OF DEPOSITIONAL,
EARLY DIAGENETIC, AND LATE
DIAGENETIC PROCESSES

Deep reservoir quality in sandstones is the cumu-
lative product of depositional, shallow diagenetic,
and deep-burial diagenetic processes. Lithologic
attributes created at each stage strongly influence
subsequent pore-system evolution. Provenance,
transport, and depositional environment determine
initial sediment texture, composition, porosity, and
permeability. These depositional characteristics
evolve with early compaction and interact with
shallow groundwater systems to control fluid flux
and geochemical reactions, influencing the type
and abundance of early diagenetic attributes. Early
diagenesis may be fluid dominated and open sys-
tem, resulting in the dissolution of unstable grains
to form secondary porosity and the precipitation of
early cements such as grain-coating clays and car-
bonates (e.g., Bjørlykke 1993; Morad et al., 2010,
this issue). Vadose zone processes such as clay in-
filtration also can be an important part of early dia-
genesis, as can biologically related processes includ-
ing bioturbation or microbially driven chemical
reactions (Worden et al., 2006).

Combined depositional and early diagenetic
attributes can significantly affect deep-burial dia-
genetic pathways. For example, deep porosity pres-
ervation may be critically linked to early clay or
microquartz grain coats. Because almost all quartz
cement nucleates syntaxially on a quartz-grain sub-
strate, both infiltrated and diagenetic grain coats
inhibit later quartz cement in proportion to the
amount of grain surface they cover. The effect of
such early diagenesis on deep reservoir quality can
1086 Sandstone Reservoir Quality Prediction: The State of the
be substantial: deeply buried, well-sorted quartz-
ose sandstones in the Norphlet Formation with
very continuous early grain coats may have inter-
granular porosities of more than 20%; whereas
depositionally comparable samples with less con-
tinuous coatings have porosities of less than 2%
(Ajdukiewicz et al., 2010, this issue). In another
example, the extent of early feldspar dissolution to
form kaolinite has a direct control on late fibrous
illite occurrence. High-temperature fibrous illite
may reduce the permeability of a deeply buried
sand by several orders of magnitude. Because fi-
brous illite typically forms by the reaction of kao-
linite with K-feldspar, illite will tend not to form in
(1) sandstones lacking feldspar at the time of de-
position, (2) settings where no early feldspar al-
teration occurs, or (3) settings where all feldspar
is altered during early diagenesis (Chuhan et al.,
2000, 2001; Franks and Zwingmann, 2010, this
issue; Ajdukiewicz et al., 2010, this issue; Lander
and Bonnell, 2010, this issue). Morad et al. (2010,
this issue) provide a comprehensive review of how
initial sediment composition, depositional environ-
ment, and sequence-stratigraphic setting influence
the early diagenesis of sandstones and subsequent
late diagenetic pathways.
CURRENT RESERVOIR QUALITY
MODEL CONCEPTS

The new generation of reservoir qualitymodels are
based on burial diagenesis concepts developed since
1990. As discussed by Taylor et al. (2010, this is-
sue), earlier concepts prevalent in the 1980s held
that (1) the extent of porosity loss with depth is
controlled by the influence of compaction, with
intergranular quartz pressure solution linked to
quartz cementation at depth; and (2) deep porosity,
where it occurs,mainly results from the dissolution
of unstable grains or early nonquartz cements as a
result of interaction with migrating organic acids.

By contrast, the current paradigm, built on
thousands of petrographic observations from res-
ervoirs around the world is that (1) most deep
porosity in conventional sandstone reservoirs is pre-
served primary,withmaximumporosity preserved
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where compaction and quartz cementation aremost
limited; and (2) most deep quartz cement forms in
a slow continuous process related to burial temper-
ature rather than to in situ grain-to-grain pressure
solution or to episodic fluid flux. Two sets of con-
ceptual breakthroughs, one related to compaction
and the other to quartz cementation, led to the
development of this new view, as discussed below.
Compaction

Grain size, sorting, shape, and matrix content de-
termine the initial space among the sand grains,
measured as the intergranular volume (IGV) of
the sediment (Weller, 1959; Houseknecht, 1987;
Paxton et al., 1990, 2002). In clean sands with no
matrix or cement, IGV equals IGP. With burial,
IGV and IGP decrease, initially as a function of
mechanical compaction under overburden, during
which grains become more closely packed. A break-
through concept for current models was derived
from the observation that in clean, well-sorted,
quartz-rich sandstones with little early cement, me-
chanical compaction does not lead necessarily to
chemical compaction but can stabilize at values
approximating closest packing (26% IGV), com-
monly achieved by 2 km (1.2 mi) burial depth
(Szabo and Paxton, 1991; Lander andWalderhaug,
1999; Paxton et al., 2002). Sandstones with ductile
grains such as shale clasts or lithic fragments ex-
perience more extensive compaction and lower
IGVs and IGPs than their rigid-grained counterparts
under the same burial conditions (Rittenhouse,
1971). The influence of ductile grains on compac-
tion is a function of their mechanical properties
and abundances, as well as effective stress (e.g.,
Pittman and Larese, 1991). Overpressure can in-
hibit compaction by reducing effective stress, but
only if introduced before extensive mechanical
compactionhas occurred (Paxton et al., 2002; Bloch
et al., 2002).
Cementation

The second major conceptual breakthrough for
the new paradigm was the idea that in sandstones
at temperatures in excess of 60 to 80°C, quartz
cement overcomes kinetic inhibitions and begins
to precipitate on available quartz grain surfaces as
a predictable function of time, temperature, quartz
grain surface area (Walderhaug, 1994a, b; 1996;
2000), and nucleation domain size (Heald and
Renton, 1966;Makowitz and Sibley, 2001; Lander
et al., 2008). Various factors can inhibit quartz
cement growth. The most widespread of these are
early formed grain coats, most commonly of infil-
trated or diagenetic clays (Heald and Larese, 1974;
Pittman et al., 1992), as previously discussed.

These two concepts lie at the core of the new
reservoir quality–predictive tools. Intergranular po-
rosity is predicted as a function of calculated IGV
minus calculated cement abundance (Lander and
Walderhaug, 1999). Over the years, the applica-
tion of these tools to a range of lithologies and
burial conditions has allowed the concepts under-
lying the models to be tested against alternative
hypotheses for deep reservoir quality controls (e.g.,
Aase and Walderhaug, 2005; Bonnell et al., 2006;
Makowitz and Sibley, 2001). Myths and realities
associated with various proposed deep porosity
controls, such as late dissolution of early cements
and cement inhibition by early emplaced hydro-
carbons, framework grain dissolution, decreased
thermal exposure, and grain coatings are discussed
by Taylor et al. (2010, this issue).

FUTURE DIRECTIONS

In the future, we expect that reservoir quality
models may be extended to consider the impact of
additional diagenetic processes, linked to deposi-
tional models, integrated with petrophysical and
geophysical formation characterization and geo-
mechanical models, and applied to the exploration
and production of tight gas sandstones.
Continued Model Improvements

An important extension of the new reservoir qual-
ity modeling approach will be the incorporation
of reaction transfermodels (Taylor et al., 2010, this
issue). Key differences compared with existing re-
action transport models will be (1) the integration
Ajdukiewicz and Lander 1087



of the more sophisticated compaction, quartz ce-
mentation, fibrous illite formation, microporosity,
and permeability models from reservoir quality
models; (2) the use of geologic data sets rather than
laboratory data to constrain reaction kinetics; and
(3) the greater emphasis on predicting not only bulk
mineralogical composition, but also sandstone tex-
ture and the impact that this texture has on reactive
surfaces and bulk rock properties. This combined
approach will improve predictive capabilities in
geologic settings with significant material fluxes.
Such settings include shallow groundwater, soil,
and vadose zones (e.g., Ajdukiewicz et al., 2010,
this issue); regimes with substantial topographic
drive for flow; fault-related flow (as discussed by
Taylor et al., 2010, this issue); diffusive transfer
associatedwith interbedded lithologies (e.g., Thyne
et al., 2001); and thermohaline circulation near salt
structures (e.g., Hanor, 1987). This modeling ap-
proach may be augmented by incorporation of
models of biogeochemical processes for use in pre-
dicting the occurrence and distribution of early grain
coats, carbonate cementation and dissolution, sec-
ondary porosity development, and the occurrence
of some types of diagenetic kaolinite and chlorite.

Several kinetically controlled silicate reactions
have yet to be accounted for in reservoir quality
prediction models. Although a model has recently
been published describing the kinetics of plagio-
clase albitization in natural sandstones (Perez and
Boles, 2006), no comparable model has been de-
veloped for the albitization of K-feldspar. In ad-
dition, predictive kinetic models are still lacking
for the occurrence of zeolites such as clinoptilolite,
analcime, and laumontite in sandstones and the
extent of compaction associated with illitic grain
coatings (e.g., Bjørkum, 1996).
Improvements to Models That Predict the
Spatial Distribution, Texture, and Framework
Grain Composition of Sandstones

Sandstone depositional composition and texture
are essential input for the current generation of
diagenesis/reservoir quality models. Reservoir qual-
ity prediction models in the broader sense, there-
fore, should encompass those processes that con-
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trol lithologic character at deposition. Forward
depositional models provide a rigorous means for
predicting the spatial distributions and textures
of sandstones (e.g., Granjeon and Joseph, 1999;
Griffiths et al., 2001; Sømme et al., 2009). A short-
coming in the current generation of such models,
however, is that they do not predict framework
grain compositions and textures at the level of de-
tail required for diagenetic modeling. One poten-
tial means of addressing this problem would be
the incorporation of a promising new approach
developed by Heins and Kairo (2007) for predict-
ing framework grain compositions based on sedi-
ment provenance, climate, transport distance, and
other factors into depositional models.
Use of Reservoir Quality Model
Predictions As Input for Rock Physics and
Petrophysics Models

Integrated reservoir quality/rock property models
may provide an important means for improving
reservoir characterization by predicting log and
seismic properties. In addition, such models could
provide a unique method for reconstructing geo-
mechanical properties through geologic time. The
present-day characteristics of sandstone reservoirs
may differ substantially from the rock character-
istics during the time of reservoir deformation.
Thus, integrated reservoir quality and rock prop-
erty models could constrain input for geomechan-
ical models that aim to predict fault or natural
fracture characteristics (Laubach et al., 2009).
Application of Reservoir Quality Models to
Unconventional Reservoirs

The methods and tools developed for conven-
tional reservoir quality prediction can be extended
to prediction of sweet spots related to porosity in,
and hydraulic fracture behavior of, unconventional
reservoirs as discussed by Tobin et al. (2010, this
issue). In addition, this modeling approach pro-
vides a means to improve the understanding of the
origin of petroleum systems in tight gas plays by re-
constructing reservoir properties at the time of hy-
drocarbon incursion (Tobin et al., 2010, this issue).
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CONCLUSIONS

Advances in the understanding of diagenetic pro-
cesses have led to substantial improvements in the
prediction of sandstone reservoir quality. The in-
tegration of high-quality petrographic data with
burial history reconstructions to construct and cali-
brate predictive models has been crucial to success-
ful prediction. A principal conclusion from the ap-
plication of the new models to multiple reservoirs
under varied burial conditions is that the commonly
applied term “anomalous porosity” is a flawed con-
cept, apart from the narrow statistical sense of the
term.All observed values of reservoir porosity should
be predictable as a logical consequence of deposi-
tional, early diagenetic, and late diagenetic processes.
What has been described as anomalous porosity is
in fact the high end of the range of possible out-
comes, where a particular combination of grain size,
sorting, composition, early diagenesis, and burial
history have acted together to minimize the effects
of compaction and cementation and preserve the
greatest amount of porosity and permeability at
depth.
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